Honors Geometry
 Notes Section 9.1
 Translate Figures and Use Vectors

VOCABULARY

Image: new figure resulting from a transformation

Preimage: original figure prior to transformation

Isometry: a transformation that preserves length and angle measure.

Vector: a quantity that has both direction and magnitude (size); \qquad

Initial Point: starting point of a vector

Terminal Point: ending point of a vector

Component Form: 〈horizontal component, vertical component〉

Horizontal Component: x-coordinate direction

Vertical Component: y-coordinate direction

Translation: a transformation that moves ever point of a figure the same distance in the same direction.

THEOREM 9.1 Translation Theorem A translation is an isometry.

EXAMPLE 1 Graph quadrilateral $A B C D$ with vertices $A(-1,2), B(-1,5)$, $C(4,6)$, and $D(4,2)$. Find the image of each vertex after the translation $(x, y) \rightarrow(x+3, y-1)$. Then graph the image using prime notation.
$(x, y)=(x+3, y-1)$
$A(-1,2)=\ldots$
$B(-1,5) \rightarrow \ldots$
$C(4,6) \rightarrow \ldots$
$D(4,2) \rightarrow \ldots$

EXAMPLE 2 Write a rule for the translation of $\triangle A B C$ to $\triangle A^{\prime} B^{\prime} C^{\prime}$. Then verify that the transformation is an isometry.

Rule: $(x, y)=$

EXAMPLE 3 Name the vector and write its component form．

a）
 \qquad

b） \qquad

EXAMPLE 4 The vertices of $\triangle A B C$ are $A(0,3), B(24)$ and $C(1,0)$ ． Translate $\triangle A B C$ using the vector $\langle 5,-1\rangle$ ．

$B(24) \rightarrow$＿＿＿
$C(1,0) \rightarrow$＿ーーー

EXAMPLE 5 A boat heads out from point A on one island toward point D on another. The boat encounters a storm at B, 12 miles eas \dagger and 4 miles north of its starting point. The storm pushes the boat off course to point C, as shown.

a) Write the component form of vector $A B$.
b) Write the component form of vector BC.
c) Write the component form of the vector that describes the straight line path from the boat's current position C to its intended destination D.

