Honors Geometry Notes Section 3.6
 Prove Theorems about Perpendicular Lines

THEOREM 3.8

If two lines intersect to form a linear pair of congruent angles, then the lines are perpendicular.
If $\angle 1 \cong \angle 2$, then $g \perp h$.

THEOREM 3.9

If two lines are perpendicular, then they intersect to form four right angles.

If $a \perp b$, then $\angle 1, \angle 2, \angle 3$, and $\angle 4$ are right angles.

THEOREM 3.10

If two sides of two adjacent acute angles are perpendicular, then the angles are complementary. If $\overrightarrow{B A} \perp \overrightarrow{B C}$, then $\angle 1$ and $\angle 2$ are complementary.

Theorem 3.11 Perpendicular Transversal Theorem

If a transversal is perpendicular to one of two parallel lines, then it is perpendicular to the other. If $h \| k$ and $j \perp h$, then $j \perp k$.

Theorem 3.12 Lines Perpendicular to a Transversal Theorem

In a plane, if two lines are perpendicular to the same line, then they are parallel to each other.
If $m \perp p$ and $n \perp p$, then $m \| n$.

EXAMPLE $1 \quad A B \perp B C$. What can you conclude about $\angle 1$ and $\angle 2$?

EXAMPLE2 Complete the following proofs. D
a) Given: $E D \perp E F$

Prove: $\angle 7$ and $\angle 8$ are complementary

1. $E D \perp E F$
2. \qquad
3. $\angle D E F$ is a right angle
4. \qquad
5. $m \angle D E F=90^{\circ}$
6. \qquad
7. $m \angle 7+m \angle 8=m \angle D E F$
8. \qquad
9. $m \angle 7+m \angle 8=90^{\circ}$
10. \qquad
11. $\angle 7$ and $\angle 8$ are complementary
12. \qquad
a) Given: $\angle 1$ and $\angle 2$ are complementary

Prove: $\quad B A \perp B C$

1. $\angle 1$ and $\angle 2$ are complementary
2. \qquad
3. $m \angle 1+m \angle 2=90^{\circ}$
4. \qquad
5. $m \angle A B C=m \angle 1+m \angle 2$
6. \qquad
7. $m \angle A B C=90^{\circ}$
8. \qquad
9. $\angle A B C$ is a right angle
10. \qquad
11. $B A \perp B C$
12. \qquad

EXAMPLE 3 Determine which line, if any, must be parallel in the diagram. Explain.

EXAMPLE 4 The sculpture is drawn on a graph where units are measured in inches. What is the approximate length of $S R$, the depth of a seat?

