Honors Algebra II

Notes Section 8.6

Translate and Classify Conic Sections

Standard Form of Equations of Translated Conics

In the following equations, the point (h, k) is the *vertex* of the parabola and the *center* of the other conics.

Circle
$$(x-h)^2 + (y-k)^2 = r^2$$

Parabola
$$(y - k)^2 = 4p(x - h)$$
 $(x - h)^2 = 4p(y - k)$

Ellipse
$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$
 $\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$

Hyperbola
$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1 \qquad \frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

EXAMPLE 1 Graph.
$$(x-2)^2 + (y+3)^2 = 9$$
.

STEP 1 Identify the radius.

STEP 2 Graph the, plot the points to form the radii and complete the circle.

EXAMPLE 2a $(x+3)^2 - \frac{(y-4)^2}{4} = 1$ **STEP 1** Vertical or Horizontal.

STEP 2 Identify a, b and c.

STEP 3 Find the Center, Vertices, Co-Vertices, Foci, and Asymptotes.

STEP 4 Graph

b) Graph
$$\frac{(y-3)^2}{4} - \frac{(x+1)^2}{9} = 1$$
. STEP 1 Vertical or Horizontal.

STEP 2 Identify a, b and c.

STEP 3 Find the Center, Vertices, Co-Vertices, Foci, and Asymptotes.

STEP 4 Graph

EXAMPLE 3 Write an equation of the parabola whose vertex is at (-2,3) and whose

focus is at (-4.3).

STEP 1 Sketch to determine the form of the

parabola.

STEP 3 Find p.

STEP 4 Write equation.

EXAMPLE 3 Write an equation of the ellipse with the given foci and co-vertices.

a) Foci: (1,2) and (7,2)

b) Foci: (3,5) and (3, -1)

Co-V: (4,0) and (4,4)

Co-V: (1,2) and (5,2)

STEP 1 Sketch to determine the form of the ellipse.

STEP 2 Find the center and identify h and k.

STEP 3 Find b and c.

STEP 4 Find a.

STEP 5	Write the equation.	
EXAMPL	E 5 Identify the line(EXAMPLES 1-4.	(s) of symmetry for each conic section in
a) EXAN	NPLE 1	
b) EXAN	NPLE 2a	
EXAN	NPLE 2b	
c) EXAN	NPLE 3	
d) EXAN	NPLE 4a	
EXAN	NPLE 4b	

Classifying Conics Using Their Equations

Any conic can be described by a **general second-degree equation** in x and y: $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$. The expression $B^2 - 4AC$ is the **discriminant** of the equation and can be used to identify the type of conic.

Discriminant	Type of Conic	
$B^2 - 4AC < 0, B = 0, \text{ and } A = C$	Circle	
$B^2 - 4AC < 0$ and either $B \neq 0$ or $A \neq C$	Ellipse	
$B^2 - 4AC = 0$	Parabola	
$B^2 - 4AC > 0$	Hyperbola	

If B = 0, each axis of the conic is horizontal or vertical.

EXAMPLE 6 Classify the conic section given. Then graph their equation.

a)
$$4x^2 + y^2 - 8x - 8 = 0$$

a=____ b=____

b)
$$x - 3 = 1/2(y-2)^2$$

a=____ b=___

C =	

Center:____

a = _____

b = ____

c = ____

Vertices:

Co-Vertices:

Foci: ______

Vertex: ____

4p = _____

) =

Focus: _____

Directrix: _____

EXAMPLE 7 In a lab experiment, you record images of a steel ball rolling past a magnet. The equation $16x^2 - 9y^2 - 96x + 36y - 36 = 0$. Models the ball's path.

a) What is the shape of the path?

$$16x^2 - 9y^2 - 96x + 36y - 36 = 0$$

c) Graph the equation.

a = ____

b = ____

c = ____

Center:____

Vertices:

Co-Vertices:

Foci: _____

