Honors Algebra II Notes Section 8.6 Translate and Classify Conic Sections

Standard Form of Equations of Translated Conics

In the following equations, the point (h, k) is the vertex of the parabola and the center of the other conics.

Circle

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

Horizontal axis

Vertical axis

Parabola

$$
(y-k)^{2}=4 p(x-h)
$$

$$
(x-h)^{2}=4 p(y-k)
$$

Ellipse

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

$$
\frac{(x-h)^{2}}{b^{2}}+\frac{(y-k)^{2}}{a^{2}}=1
$$

Hyperbola

$$
\frac{(x-h)^{2}}{a^{2}}-\frac{(y-k)^{2}}{b^{2}}=1
$$

$$
\frac{(y-k)^{2}}{a^{2}}-\frac{(x-h)^{2}}{b^{2}}=1
$$

EXAMPLE 1 Graph. $(x-2)^{2}+(y+3)^{2}=9$.

STEP 1 Identify the radius.

STEP 2 Graph the, plot the points to

 form the radii and complete the circle.

EXAMPLE 2a $(x+3)^{2}-\frac{(y-4)^{2}}{4}=1$ STEP 1 Vertical or Horizontal. STEP 2 Identify a, b and c.

STEP 3 Find the Center, Vertices, Co-Vertices, Foci, and Asymptotes.

STEP 4 Graph

b) $\operatorname{Graph} \frac{(y-3)^{2}}{4}-\frac{(x+1)^{2}}{9}=1$. STEP 1 Vertical or Horizontal.

STEP 2 Identify a, b and c.

STEP 3 Find the Center, Vertices, Co-Vertices, Foci, and Asymptotes.

EXAMPLE 3 Write an equation of the parabola whose vertex is at $(-2,3)$ and whose focus is at $(-4,3)$.

STEP 1 Sketch to determine the form of the parabola.

STEP 2 Identify h and k.

STEP 4 Write equation.

EXAMPLE 3 Write an equation of the ellipse with the given foci and co-vertices.
a) Foci: $(1,2)$ and $(7,2)$
Co-V: $(4,0)$ and (4,4)
b) Foci: $(3,5)$ and (3, -1) Co-V: $(1,2)$ and $(5,2)$

STEP 1 Sketch to determine the form of the ellipse.

STEP 2 Find the center and identify h and k.

STEP 3 Find b and c.

STEP 4 Find a.

STEP 5 Write the equation.

EXAMPLE 5 Identify the line(s) of symmetry for each conic section in EXAMPLES 1-4.
a) EXAMPLE 1
b) EXAMPLE 2a

EXAMPLE 2b
c) EXAMPLE 3
d) EXAMPLE 4a

EXAMPLE 46 \qquad

Classifying Conics Using Their Equations

Any conic can be described by a general second-degree equation in x and $y: A x^{2}+B x y+C y^{2}+D x+E y+F=0$. The expression $B^{2}-4 A C$ is the discriminant of the equation and can be used to identify the type of conic.

Discriminant	Type of Conic
$B^{2}-4 A C<0, B=0$, and $A=C$	Circle
$B^{2}-4 A C<0$ and either $B \neq 0$ or $A \neq C$	Ellipse
$B^{2}-4 A C=0$	Parabola
$B^{2}-4 A C>0$	Hyperbola

If $B=\mathbf{0}$, each axis of the conic is horizontal or vertical.

EXAMPLE 6 Classify the conic section given. Then graph their equation.
$a=\ldots \quad b=\ldots$
$c=$ \qquad $a=_\quad b=_\quad c=_$_ \quad _

Center: \qquad
$a=$

$\boldsymbol{c}=$ \qquad

Vertices: \qquad
Co-Vertices: \qquad
Foci: \qquad

Focus: \qquad
Directrix: \qquad

EXAMPLE 7 In a lab experiment, you record images of a steel ball rolling past a magnet. The equation $16 x^{2}-9 y^{2}-96 x+36 y-36=0$. Models the ball's path.
a) What is the shape of the path?
b) Write an equation for the path in standard form.

$$
16 x^{2}-9 y^{2}-96 x+36 y-36=0
$$

c) Graph the equation.
$a=$ \qquad
b $=$ \qquad
c = \qquad

Center: \qquad
Vertices: \qquad
Co-Vertices: \qquad
Foci: \qquad

