# Honors Algebra II Notes Section 7.5 

## Use Recursive Rules with Sequences and Functions

Explicit Rule: give $a_{n}$ as a function of the term's position number $(\mathrm{n})$ in the sequence.

Recursive Rule: gives the beginning term/terms of a sequence and then an equation that tells how $a_{n}$ is related to one or more preceding terms.

Arithmetic Sequence: $\quad a_{n}=a_{n-1}+d \quad ; \quad d=$ $\qquad$

Geometric Sequence:

$$
a_{n}=r \cdot a_{n-1} \quad ; \quad r=
$$

$\qquad$

Iteration: repeated composition $f(g(x))$ of a function with itself.

EXAMPLE 1 Write the first six terms of the sequence.
a) $a_{0}=1, \quad a_{n}=a_{n-1}+4$
b) $a_{1}=1, \quad a_{n}=3 a_{n-1}$
$a_{0}=1$
$a_{1}=1$
$a_{1}=$
$a_{2}=$ $\qquad$
$a_{2}=$

$$
a_{3}=
$$

$\qquad$
$a_{3}=$ $\qquad$
$34=$ $\qquad$
$a_{4}=$ $\qquad$
$\lambda_{5}=$ $\qquad$
$35=$ $\qquad$
$\qquad$

EXAMPLE 2 Write a recursive rule for the sequence．
a） $3,13,23,33,43, \ldots$
b） $16,40,100,250,625, \ldots$
$d=$

$$
a_{n}=a_{n-1}+d
$$

type： $\qquad$
$r=$
$a_{n}=r \cdot a_{n-1}$

$$
a_{n}=r \cdot a_{n-1}
$$

EXAMPLE 3 Write a recursive rule for the sequence．
a） $1,1,2,3,5, \ldots$

Note＊＊Beginning with the 3rd term each term is the sum of the 2 previous terms．
$a_{1}=$ ーーーー $\quad \boldsymbol{a}_{2}=$ —ーーー
b） $1,1,2,6,24, \ldots$

$$
a_{0}=1
$$

$1 \cdot 1=$ $\qquad$
$2 \cdot 1=$ $\qquad$ $a_{2}=$ $\qquad$
$3 \cdot 2=$＿
$a_{3}=$ $\qquad$
$43=$＿
$a_{4}=$ $\qquad$

EXAMPLE 4 An online music service initially has 50,000 annual members. Each year it loses $20 \%$ of its current members and adds 5000 new members.
a) Write a recursive rule for the number $a_{n}$ of members at the start of the $n^{\text {th }}$ year.
b) Find the number of members at the START of the 5th year.

Note** Show how to do on
$a_{1}=$ $\qquad$ the calculator to save time!

$$
\lambda_{2}=
$$

$\qquad$
$\lambda_{3}=$ $\qquad$
$a_{4}=$ $\qquad$
c) Describe what happens to the number of members over time.

EXAMPLE 5 Find the first 3 iterates $x_{1}, x_{2}$, and $x_{3}$ of the function: $f(x)=-3 x+1$ for an initial value of $x_{0}=2$.

$$
x_{1}=\text { _ー_ー_ }
$$

$$
x_{2}=\ldots-\ldots
$$

$$
x_{3}=\ldots \ldots
$$

The first three iterates are $\qquad$ .

