Honors Algebra II Notes Section 7.3

Analyze Geometric Sequences and Series
Geometric Sequence: ratio fo any term to the previous term is constant.

Common Ratio:
constant ratio; r

Geometric Series: expression formed by adding the terms of a geometric sequences.

Rule for a Geometric Sequence:

$$
a_{n}=a_{1} r^{n-1}
$$

The Sum of a Finite Geometric Series:

$$
S_{n}=a_{1}\left(\frac{1-r^{n}}{1-r}\right)
$$

EXAMPLE 1 Tell whether the sequence is geometric.
a) $4,10,18,28,40, \ldots$
b) $625,125,25,5,1, \ldots$

EXAMPLE 2 Write a rule for the nth term of the sequence. Then find a7.
a) $4,20,100,500, \ldots$
$\lambda_{1}=$ \qquad $r=$ \qquad
b) $152,-76,38,-19, \ldots \quad a_{1}=$ \qquad $r=$ \qquad

EXAMPLE 3 One term of a geometric sequence is $a_{4}=12$. The common ratio is $r=2$.

Write a rule for the nth term and graph.

EXAMPLE 4 Two terms of a geometric sequence are $a_{3}=-48$ and $a_{6}=3072$. Find a rule for the nth term.

STEP 1 Write a system of equations: $a_{n}=a_{1}{ }^{p n-1}$

STEP 2 Solve the system of equations for r and a_{1}

STEP 3 Find a rule for a_{n} by substituting in a_{1} and r

EXAMPLE 5 Find the sum of the geometric series. $\sum_{i=1}^{16} 4(3)^{i-1}$
STEP 1 Identify the ist term: a_{1}
STEP 2Identify the common ratio: r

STEP 3 Write a rule for $\$_{16}$

$$
S_{n}=a_{1}\left(\frac{1-r^{n}}{1-r}\right)
$$

EXAMPLE 6 In 1990, the total box office revenue at US movie theaters was about Ș5.02 billion. From 1990 through 2003, the total box office revenue increased by about 5.9% per year.
a) Write a rule for the total box office revenue a_{n} (in billions) in terms of the year. Let $\mathrm{n}=1$ represent 1990.

$$
r=1+\ldots __ \text {=______ }
$$

b) What was the total box office revenue at US movie theaters for the entire period 1990-2003?

