Honors Algebra II

 Notes Section 7.2Analyze Arithmetic Sequences and Series
Arithmetic Sequence: the difference of consecutive terms is constant;

$$
a_{n}=a_{1}+(n-1) d
$$

Common Difference: difference of an arithmetic sequence; d

Arithmetic Series: expression formed by adding the terms of an arithmetic sequence.

Sum of a Finite Arithmetic Series: $\quad S_{n}=n\left(\frac{a_{1}+a_{n}}{2}\right)$

EXAMPLE 1 Tell whether the sequence is arithmetic.
a) $-4,1,6,11,16, \ldots$
b) $3,5,9,15,23, \ldots$

EXAMPLE 2 Write a rule for the nth term of the sequence. Then find \boldsymbol{a}_{15}.
a) $4,9,14,19, \ldots$
b) $60,52,44,36, \ldots$
$d=$ \qquad d = \qquad

EXAMPLE 3 One term of an arthmetic sequence is $a_{19}=48$. The common difference is $d=3$.
a) Write a rule for the nth term by finding the ist term
b) Graph

* Points should form a line for any arithmetic sequence *

EXAMPLE 4 Two terms of an arithmetic sequence are $a_{8}=21$ and $\lambda_{27}=97$. Find a rule for the nth term.

STEP 1 Write a system of equations: $a_{n}=a_{1}+(n-1) d$, then solve for d

STEP 2 Substitute d into either equation and solve for a_{1}.
 STEP 3 Substitute d \& a_{1} into sequence.

EXAMPLE 5 What is the sum of the arithmetic series $\sum_{i=1}^{20}(3+5 i)$:

STEP 1 Find first term: a_{1}

STEP 2 Find last term: a_{20}

STEP 3 Use Sum of Finite Arithmetic Series Formula

EXAMPLE 6 You are making a house of cards similar to the one shown.
a) Write a rule for the number of cards in the nth row if the top row is row 1?

Row 1 = \qquad

Row 2 = \qquad
Row 3 = \qquad
$d=$ \qquad
b) What is the total number of cards if the house of cards has 14 rows?
$a_{1}=$ \qquad

