Honors	A	lgebra	
--------	---	--------	--

Notes Section 7.1

Define and Use Sequences and Series

- <u>Sequence</u>: a function whose domain is a set of consecutive integers. Understood to begin with 1.
- <u>Terms</u>: values in the range of a sequence

Finite Sequence: limited number of terms

Infinite Sequence: unlimited number of terms

<u>Series:</u> when the terms of a sequence are added together

Summation Notation (Sigma Notation):

EXAMPLE 1 Write the 1st six terms of

a)	$a_n = 2n + 5$	b)	f(n) = (-3) ⁿ⁻¹
	a1 =		f(1) =
	a ₂ =		f(2) =
	a3 =		f(3) =
	a4 =		f(4) =
	as =		f(5) =
	a ₆ =		f(6) =

EXAMPLE 5 Find the sum of the series.

$$\sum_{k=4}^{8} (3 + k^2)$$

Formulas for Special Series

Sum of <i>n</i> terms of 1	Sum of first <i>n</i> positive integers	Sum of squares of first <i>n</i> positive integers
$\sum_{i=1}^n 1 = n$	$\sum_{i=1}^n i = \frac{n(n+1)}{2}$	$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$

EXAMPLE 6 How many apples are in the stack in Example 3?

EXAMPLE 7 Suppose there were 9 layers, how many apples in the stack?