Honors Algebra II Notes Section 7.1

 Define and Use Sequences and Series

 Define and Use Sequences and Series}

Sequence: a function whose domain is a set of consecutive integers. Understood to begin with 1.

Terms: \quad values in the range of a sequence

Finite Sequence: limited number of terms

Infinite Sequence: unlimited number of terms

Series: \quad when the terms of a sequence are added together

Summation Notation (Sigma Notation):

EXAMPLE 1 Write the ist six terms of
a) $a_{n}=2 n+5$
$a_{1}=$ \qquad
$a_{2}=$ \qquad
$\mathrm{a}_{3}=$ \qquad
b) $f(n)=(-3) n-1$
$f(1)=$ \qquad
$a_{4}=$ \qquad
$25=$ \qquad
$a_{6}=$ \qquad
$f(2)=$ \qquad
$f(3)=$ \qquad
$f(4)=$ \qquad
$f(5)=$ \qquad
$f(6)=$ \qquad

EXAMPLE 2 Describe the pattern, write the next term, and write a rule (equation) for the nth term of the sequence.
a) $-1,-8,-27,-64, \ldots$
b) $0,2,6,12, \ldots$

Example 3 You work in a grocery store and are stocking apples in the shape of a square pyramid with 7 layers. Write a rule for the number of apples in each layer. Then graph the sequence.

Rule: \qquad

EXAMPLE 4 Write the series using summation notation.
a) $25+50+75+\ldots 250$
b) $1 / 2+2 / 3+3 / 4+4 / 5+\ldots$
c) $6+36+216+1296+\ldots$
d) $5+6+7+\ldots+12$

EXAMPLE 5 Find the sum of the series.

$$
\sum_{k=4}^{8}\left(3+k^{2}\right)
$$

Formulas for Special Series

Sum of n terms of 1
$\sum_{i=1}^{n} 1=n$

Sum of first \boldsymbol{n} positive integers
$\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$

Sum of squares of first n positive integers

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

EXAMPLE 6 How many apples are in the stack in Example 3?

EXAMPLE 7 Suppose there were 9 layers, how many apples in the stack?

