Honors Algebra II

Notes Section 6.3

Use Normal Distributions

Normal Distribution	a probability distribution that is modeled by a bell-shaped curve.					
Normal Curve:	bell-shaped curve that is symmetric about the mean.					
Standard Normal Distrik	<u>pution:</u> normal distirbution with mean 0 and standard deviation 1.					
<u>Mean:</u> average;	x					
<u>Standard Deviation:</u> σ_{i}	; the typical differnce between a data value and the mean.					
$\frac{z \text{-score:}}{x}$ the number of x . $z = x - \overline{x}$ σ	f standard deviations the x-value lies above or below the mean					
	distribution has mean x and standard deviation σ . For a velocited x-value from the distribution, find $P(\bar{x} - 2\sigma \le x \le \bar{x})$.					

Areas Under a Normal Curve

A normal distribution with mean \overline{x} and standard deviation σ has the following properties:

- The total area under the related normal curve is 1.
- About 68% of the area lies within 1 standard deviation of the mean.
- · About 95% of the area lies within 2 standard deviations of the mean.
- About 99.7% of the area lies within 3 standard deviations of the mean.

Standard Normal Table											
z	.0	.1	.2	.3	.4	.5	.6	.7	.8	.9	
-3	.0013	.0010	.0007	.0005	.0003	.0002	.0002	.0001	.0001	+0000	
-2	.0228	.0179	.0139	.0107	.0082	.0062	.0047	.0035	.0026	.0019	
-1	.1587	.1357	.1151	.0968	.0808	.0668	.0548	.0446	.0359	.0287	
-0	.5000	.4602	.4207	.3821	.3446	.3085	.2743	.2420	.2119	.1841	
0	.5000	.5398	.5793	.6179	.6554	.6915	.7257	.7580	.7881	.8159	
1	.8413	.8643	.8849	.9032	.9192	.9332	.9452	.9554	.9641	.9713	
2	.9772	.9821	.9861	.9893	.9918	.9938	.9953	.9965	.9974	.9981	
3	.9987	.9990	.9993	.9995	.9997	.9998	.9998	.9999	.9999	1.0000-	