Honors Algebra II Notes Section 6.3 Use Normal Distributions

Normal Distribution

Normal Curve: a probability distribution that is modeled by a bell-shaped curve.
bell-shaped curve that is symmetric about the mean.

Standard Normal Distribution: normal distirbution with mean 0 and standard deviation 1.

Mean: average; \bar{X}

Standard Deviation: σ; the typical differnce between a data value and the mean.
z-score: the number of standard deviations the x-value lies above or below the mean x .
$z=x-\bar{x}$
σ

EXAMPLE 1 A normal distribution has mean x and standard deviation σ. For a randomly selected x-value from the distribution, find $P(\bar{x}-2 \sigma \leq x \leq \bar{x})$.

EXAMPLE 2 The blood cholestrol readings for a group of women are normally

 distributed with a mean of $172 \mathrm{mg} / \mathrm{dl}$ and a standard deviation of 14 $\mathrm{mg} / \mathrm{dl}$.a) About what percent of the women have readings between 158 and 186?

b) Readings less than 158 are considered desirable. About what percent of the readings are desirable?

EXAMPLE 3 Scientists conducted aerial surveys of a seal sanctuary and recorded the number x of seals they observed during each survey. The numbers of seals observed were normally distributed with a mean of 73 seals and a standard deviation of 14.1 seals. Find the probability that a most 50 seals were observed during a survey.
a) Find the z-score corresponding to an x-value of 50
b) Use the table to find $\mathrm{P}(\mathrm{x} \leq 50)=\mathrm{P}(\mathrm{z} \leq \quad)$

\mathbf{z}	$\mathbf{. 0}$	$\mathbf{. 1}$	$\mathbf{. 2}$	$\mathbf{. 3}$	$\mathbf{. 4}$	$\mathbf{. 5}$	$\mathbf{. 6}$	$\mathbf{. 7}$	$\mathbf{. 8}$	$\mathbf{. 9}$
$-\mathbf{3}$.0013	.0010	.0007	.0005	.0003	.0002	.0002	.0001	.0001	$.0000+$
$-\mathbf{2}$.0228	.0179	.0139	.0107	.0082	.0062	.0047	.0035	.0026	.0019
$-\mathbf{1}$.1587	.1357	.1151	.0968	.0808	.0668	.0548	.0446	.0359	.0287
$-\mathbf{0}$.5000	.4602	.4207	.3821	.3446	.3085	.2743	.2420	.2119	.1841
$\mathbf{0}$.5000	.5398	.5793	.6179	.6554	.6915	.7257	.7580	.7881	.8159

Areas Under a Normal Curve

A normal distribution with mean \bar{x} and standard deviation σ has the following properties:

- The total area under the related normal curve is 1 .
- About 68% of the area lies within 1 standard deviation of the mean.
- About 95% of the area lies within 2 standard deviations of the mean.
- About 99.7% of the area lies within 3 standard deviations of the mean.

Standard Normal Table										
\mathbf{Z}	$\mathbf{. 0}$	$\mathbf{. 1}$	$\mathbf{. 2}$	$\mathbf{. 3}$	$\mathbf{. 4}$	$\mathbf{. 5}$	$\mathbf{. 6}$	$\mathbf{. 7}$	$\mathbf{8}$	$\mathbf{. 9}$
$\mathbf{- 3}$.0013	.0010	.0007	.0005	.0003	.0002	.0002	.0001	.0001	$.0000+$
$\mathbf{- 2}$.0228	.0179	.0139	.0107	.0082	.0062	.0047	.0035	.0026	.0019
$\mathbf{- 1}$.1587	.1357	.1151	.0968	.0808	.0668	.0548	.0446	.0359	.0287
$-\mathbf{0}$.5000	.4602	.4207	.3821	.3446	.3085	.2743	.2420	.2119	.1841
$\mathbf{0}$.5000	.5398	.5793	.6179	.6554	.6915	.7257	.7580	.7881	.8159
$\mathbf{1}$.8413	.8643	.8849	.9032	.9192	.9332	.9452	.9554	.9641	.9713
$\mathbf{2}$.9772	.9821	.9861	.9893	.9918	.9938	.9953	.9965	.9974	.9981
$\mathbf{3}$.9987	.9990	.9993	.9995	.9997	.9998	.9998	.9999	.9999	$1.0000-$

