Honors Algebra II

Notes Section 6.2

Construct and Interpret Binomial Distributions

Random Variable: a variable whose value is determined by the outcomes of a random event.

Probability Distribution: a function that gives the probability of each possible value of a random variable. The sum of all possible probabilities $=1$.

Binomial Distribution: a probability distribution that shows the probabilities of the outcomes of a binomial experiment.

Binomial Experiment: 1) n independent trials
2) 2 possible outcomes/trials: Success or Failure
3) p : probability for success

1-p: probability for failure
4) $P(k$ successes $)={ }_{n} C_{k} p^{k}(1-p){ }^{n-k}$

Symmetric: Type of distribution that can have a vertical line drawn that divides it into mirror images.

Skewed: a distribution that is NOT symmetric

EXAMPLE 1 Let x be a random variable that represents the sum when two six-sided dice are rolled. Make a table and a histogram showing the probability distribution for x .

\square

EXAMPLE 2 Use the probability distribution in EXAMPLE 1 to answer each question.
a) What is the most likely sum when rolling two six-sided dice? \qquad
b) What is the probability that the sum of the two dice is at least 10?

EXAMPLE 3 According to a survey, about 41% of U.S. households have a soccer ball. Suppose you ask 6 randomly chosen U.S. households whether they have a soccer ball. Draw a histogram of the binomial distribution for your survey.
$P(k$ successes $\left.)={ }_{n} C_{k} p^{k}(1-p)\right)^{n-k}$
$P(k=0)$

$P(k=1)$ \qquad
$P(k=2)$ \qquad
$P(k=3)$ \qquad
$P(k=4)$ \qquad
$P(k=5)$ \qquad
$P(k=6)$

Total: \qquad

EXAMPLE 4 Use the binomial distribution in EXAMPLE 3 to answer each question.
a) What is the most likely outcome of the survey?
b) What is the probability that at most 2 households have a soccer ball?

EXAMPLE 5 Describe the shape of the binomial distribution that shows the probability of exactly k successes in 8 trials if
a) $p=0.5$
b) $p=0.9$

NOTE $* * * p \leq 0.5$ \qquad

$$
p=0.5
$$

\qquad
$p \geq 0.5$

