Honors Algebra II Notes Section 6.1

Use Combinations and the Binomial Theorem

Combination: a selection of objects (\boldsymbol{r}) from a group (n) where the order is NOT important.

$$
{ }_{n} C_{r}=\frac{n!}{(n-r)!\cdot r!}
$$

EXAMPLE 1 Evaluate.
a) $5!$
b) (4-2)!3!
c) 81
$5!$
\qquad

EXAMPLE 2 A standard deck of 52 playing cards has 4 suits with 13 different cards in each suit.
a) If the order in which the cards are dealt is not important, how many different 5card hands are possible?
b) In how many 5-card hands are all 5 cards If the same color?

Multiple Events: I. Event A "and" Event B occur ... MULTIPLY
II. Event A "or" Event B occur . . . ADD

EXAMPLE 3 William Shakespeare wrote 38 plays that can be divided into 3 genres. Of the 38 plays, 18 are comedies, 10 are histories, and 10 are tragedies.
a) How many different sets of exactly 2 comedies and 1 tragedy can you read?
b) How many different sets of at most 3 plays can you read?

EXAMPLE 4 During the school year, the girl's basketball team is scheduled to play 12 home games. You want to attend at least 3 of the games. How many different combinations of games can you attend?

Pascals Triangle:

Binomial Theorem (Binomial Expansion):

EXAMPLE 5 The 6 members of a Model UN club must choose 2 representatives to attend a state convention. Use Pascal's triangle to find the number of combinations of 2 members that can be chosen as representatives.

EXAMPLE 6 Write the Binomial Expansion.
a) $\left(x^{2}+y\right)^{3}$
b) $(a+2 b)^{4}$
c) $(5-2 y)^{3}$

EXAMPLE 7 Find the coefficient of x^{4} in the expression of $(3 \mathrm{x}+2)^{10}$.

