Honors Algebra II

## Section 5.1

## Model Inverse and Joint Variation

VOCABULARY
Inverse Variation: $y=a / x$ or ___ also a is not $=$ to zero

Constant of Variation: a

Direct Variation:
$y=a x$

Joint Variation: $\quad z=a x y$ or $w=a x y z$

EXAMPLE 1 Tell whether $x$ and $y$ show direct variation, inverse variation or neither.
a) $x y=7$
b) $y=x+3$
c) $y / 4=x$
d) $y-3 x=0$
$\qquad$
$\qquad$


EXAMPLE $2 X$ and $Y$ vary inversely, and $y=7$ when $x=4$. Write and equation that relates $X$ and $Y$. Then find $Y$ when $X=-2$.

EXAMPLE 3 The number of songs that can be stored on an MP3 player varies inversely with the average size of a song. A certain MP3 player can store 2500 songs when the average size of a song is 4 megabytes.
a) Write a model that gives the number of $n$ songs that will fit on the MP3 player as a function of the average song s (in megabytes).
b) Make a table of values showing the number of songs that will fit on the MP3 player if the average size of a song is $2 M B, 2.5 M B, 3 M B$ and 5 MB .

c) What happens to the number of songs as the average song size increases?

EXAMPLE 4 The table compares the area $A\left(\mathrm{~mm}^{2}\right)$ of a computer chip with the number $C$ of chips that can be obtained from a silicon wafer.

| Area $\left(\mathrm{mm}^{2}\right)$, A | 58 | 62 | 66 | 70 |
| :--- | :---: | :---: | :---: | :---: |
| Number of chips, $c$ | 448 | 424 | 392 | 376 |

a) Write a model that gives $\mathbf{c}$ as a function of $A$.

## Steps

1) Find the product of each coordinate
2) a is approximately $\qquad$
Predict the number of chips/wafer when $A=81 \mathrm{~mm}^{2}$.

EXAMPLE 5 The variable $z$ varies jointly with $x$ and $y$. Also, $z=-75$ when $x=3$ and $y=-5$. Write an equation that relates $x, y$ and $z$. Then find $z$ when $x=2$ and $y=6$.

EXAMPLE 6 Write an equation for the given relationship.
a) $y$ varies inversely with $x$
b) $z$ varies jointly with $x, y$ \& $r$
c) $y$ varies inversely with the square of $x$
d) $z$ varies directly with $y$ and inversely with $x$
e) $x$ varies jointly with $\dagger$ and $r$ and inversely with s
f) $x$ varies inversely with $y$ and directly with $w$

