Honors Algebra II Notes Section 4.7
 Write and Apply Exponential and Power Functions

Example 1 Write an exponential function $y=a b^{x}$ whose graph passes through (1, 12) and (3, 108).

STEPS

1. Substitute both points into exponential function
2. Solve for a in the 1st equation, substitute the result into the 2nd equation
3. Substitute $a \varepsilon b$ into $y=a b x$

TRANSFORMING EXPONENTIAL DATA: a set of more than 2 points fits an exponential pattern if and only if the set of transformed points ($x, \ln y$) fits a linear pattern.

Graph of points (x, y)

The graph is an exponential curve.

Graph of points $(x, \ln y)$

The graph is a line.

| Example 2 | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| y | 12 | 16 | 25 | 36 | 50 | 67 | 96 |

STEPS

1. Draw a scatter plot of the data (x, In y).

Is an exponential model a good fit?

x	1	2	3	4	5	6	7
y							

2. Plot the points

3. Find an exponential model $y=a b x$.
choose 2 points on the line to find the slope
**Use the point slope formula to find the model

Example 3 Repeat Example 2 using a graphing calculator. Predict y if $x=8$.

STEPS

1. Enter date into List 1 and List 2
2. Perform an exponential regression
3. Substitute $x=8$ into the exponential function

Power Function: $\quad \mathbf{y}=\boldsymbol{a} \boldsymbol{x}^{\boldsymbol{b}}$

Example 4 Write a power function $y=a x^{b}$ whose graph passes through $(3,2)$

 and (6,9).STEPS

1. Substitute both points into power function
2. Solve for a in the ist equation, substitute the result into the $2 n d$ equation
3. Substitute $a \varepsilon b$ into $y=a x^{b}$

TRANSFORMING POWER DATA: a set of more than 2 points fits an power pattern if and only if the set of transformed points $(\ln x, \ln y)$ fits a linear pattern.

Graph of points $(\ln x, \ln y)$

The graph is a line.

Example 5

x	1.9	2.92	3.41	5.35	840
y	0.23	1.04	1.69	6.76	16.03

STEPS

1. Draw a scatter plot of the data $(\operatorname{In} x, \ln y)$.

Is a power model a good fit?

2. Plot the points
3. Find an exponential model $y=a x^{b}$.

choose 2 points on the line to find the slope **Use the point slope formula to find the model

Example 3 Repeat Example 5 using a graphing calculator. Predict y if $x=4.5$

STEPS

1. Enter date into List 1 and List 2
2. Perform a power regression
3. Substitute $x=4.5$ into the power function \qquad
