

EXAMPLE 2 Solve.
a) $4 x=11$
b) $7^{9 x}=15$

EXAMPLE 3 You are driving on a hot day when your car overheats and stops running. It overheats at $280^{\circ} \mathrm{F}$ and can be driven again at $230^{\circ} \mathrm{F}$. If $r=0.0048$ and it is $80^{\circ} \mathrm{F}$ outside, how long (in minutes) do you have to wait until you can continue driving?

Newton's Law of Cooling: $T=\left(T_{0}-T_{R}\right) e^{-r t}+T_{R}$

EXAMPLE 4 Solve.

a) $\log _{5}(4 x-7)=\log _{5}(x+5)$
b) $\ln (7 x-4)=\ln (2 x+11)$

EXAMPLE 5 Solve.

a) $\log _{4}(5 x-1)=3$
b) $\log _{2}(x-6)=5$

EXAMPLE 6 Solve.

a) $\log 2 x=\log (x-5)=2$
b) $\log _{4}(x+12)+\log _{4} x=3$

EXAMPLE 7 The apparent magnitude of a star is a measure of the brightness of the star as it appears to observers on Earth. The apparent magnitude M of the dimmer star that can be seen with a telescope is given by the function
$M=5 \log D+2$
where D is the diameter (in mm) of the telescope's objecitve lens. If a telescope can reveal stars with a magnitude of 12 , what is the diameter of its objective lens?
$M=5 \log D+2$

