H	onor Algebra II
	Notes Section 4.6
So	lve Exponential and Logarithmic Equations
Exponential Equation	\mathbf{r} equations in which variable expressions occur as exponents.
Logarithmic Equation	ns: equations that involve logarithms of variable expressions.
Newton's Law of Cool	ing: $T = (T_0 - T_R)e^{-rt} + T_R$
To =	T:
Tr=	/:
EXAMPLE 1 Solve. a) 4× = (1/2)×-3	b) $9^{2x} = 27^{x-1}$ c) $100^{7x+1} = 1000^{3x-2}$
<u>Exaiviple z</u> soive.	
a) 4×=11	b) 7 ^{9×} = 15

a) $\log 2x = \log (x-5) = 2$

b) $\log_4(x+12) + \log_4 x = 3$

EXAMPLE 7 The apparent magnitude of a star is a measure of the brightness of the star as it appears to observers on Earth. The apparent magnitude **M** of the dimmer star that can be seen with a telescope is given by the function

 $M = 5\log D + 2$

where D is the diameter (in mm) of the telescope's objecitve lens. If a telescope can reveal stars with a magnitude of 12, what is the diameter of its objective lens?

 $M = 5\log D + 2$