Honors Algebra II

Notes Section 34

Use Inverse Functions

VOCABULARY

Inverse Relation: \qquad

Inverse Functions: \qquad

EXAMPLE 1 Find an equation for the inverse of the relation.
a) $y=3 x-5$
b) $y=-2 / 3 x+2$

EXAMPLE 2 Verify $f(x)$ and $f^{-1}(x)$ are inverses.

$$
f(x)=3 x-5 \quad \text { and } \quad f^{-1}(x)=1 / 3 x+5 / 3
$$

EXAMPLE 3 Elastic bands can be used in exercising to provide a range of resistance. A band's resistance R (in pounds) can be modeled by $R=3 / 8 L-5$ where L is the total length of the stretched band (in inches).
a) Find the inverse. Hint: Do not switch the variable when working with a word problem to find the inverse. Please solve for the other variable.
b) Find the length at which the band provides 19 pounds of resitance.

Inverses of Nonlinear Functions
I. $f(x)=x^{2} \quad$ Inverse:

II. $g(x)=x^{3}$ Inverse: \qquad

EXAMPLE 4 Find the inverse of $f(x)=x^{2}+2, x \leq 0$. Then Graph f and f^{-1}.

Vertical LineTest: to determine whether a graph represents a function.

Horizontal Line Test: to determine whether the inverse of a function is also a function.

EXAMPLE 5 Determine whether the inverse of $f(x)=2 x^{3}+1$ is a function. Then find the inverse.

EXAMPLE 6 The average price P (in dollars) for NFL tickets can be modeled by $\mathrm{P}=35 \mathrm{f} 0.192$
where t is the number of years since 1995. Find the inverse model that gives time as a function of the average ticket price. Also, predict the year when the average ticket price will reach ṣ̣5.

