Honors Algebra II
 Notes Section 2.5
 Apply the Remainder and Factor Theorems

EXAMPLE 1 Divide using long division.
a) $f(x)=x^{3}+5 x^{2}-7 x+2$ by $x-2$
b) $f(x)=3 x^{4}-5 x^{3}+4 x-6$ by $x^{2}-3 x+5$

$$
\text { c) }\left(2 x^{4}+x^{3}+x+1\right) \div\left(x^{2}+2 x-1\right)
$$

Remainder Theorem: using synthetic division with a linear divisor.
The last value = remainder.

Factor Theorem: if the remainder $=0$, then $x-k$ is a factor.

EXAMPLE 2 Divide using synthetic division.
a) $f(x)=2 x^{3}+x^{2}-8 x+5$ by $x+3$
b) $f(x)=2 x^{3}+9 x^{2}+14 x+5$ by $x-3$

EXAMPLE 3 Factor completely given one factor.
a) $f(x)=3 x^{3}-4 x^{2}-28 x-16$
b) $g(x)=x^{3}-6 x^{2}+5 x+12$
$x+2$
$x-4$

EXAMPLE 4 What is another zero?
a) $f(x)=x^{3}-2 x^{2}-23 x+60$
$x=3$
b) $g(x)=x^{3}-x^{2}-22 x+40$
$x=-5$

EXAMPLE 5 The profit P (in millions) for a shoe manufacturer can be modeled by $P=-21 x^{3}+46 x$ where x is the number of shoes produced (in millions). The company now produces 1 million shoes and makes a profit of ș $25,000,000$, but would like to cut back production. What lesser number of shoes could the company produce and still make the same profit?

