Honors Algebra II Notes Section 2.2
 Evaluate and Graph Polynomial Functions

VOCABULARY

Polynomial:
Polynomial function: $f(x)=x^{n}+x^{n-1}+x^{n-2} \ldots x+c$

Degree:
Constant Term: \# without a variable
Standard Form:

Leading coefficient: the \# in front of the term with the highest exponent.
a monomial or sum of monomials

Sum of the exponents of a term
when terms are written in descending order by degree.

POLYNOMIAL FUNCTIONS

Degree	Type	Standard Form	Example
0	Constant	$f(x)=c$	
1	Linear	$f(x)=x+c$	
2	Quadratic	$f(x)=x^{2}+x+c$	
3	Cubic	$f(x)=x^{3}+x^{2}+x+c$	
4	Quartic	$f(x)=x^{4}+x^{3}+x^{2}+x+c$	

EXAMPLE 1 Decide whether the function is a polynomial function. If so, write it in Standard Form and state its degree, type, and leading coefficient.
a) $h(x)=x^{4}-1 / 4 x^{2}+3$
b) $g(x)=7 x-\sqrt{3}+\pi x^{2}$
Polynomial/Not a Polynomial
Standard Form:
Degree: \qquad
Leading Coefficient: \qquad
Type: \qquad
c) $h(x)=5 x^{2}+3 x^{-1}-x$
Polynomial/Not a Polynomial
Standard Form: \qquad
Degree: \qquad
Leading Coefficient: \qquad
Type: \qquad

EXAMPLE 2 Evaluate.

a) $f(x)=2 x^{4}-5 x^{3}-4 x+8$
when $x=3$
b) $g(x)=x^{3}-5 x^{2}+6 x+1$
when $x=4$

Synthetic Division: a way to evaluate a polynomial function.

EXAMPLE 3 Use Synthetic Division to evaluate.

a) $f(x)=2 x^{4}-5 x^{3}-4 x+8$
b) $g(x)=x^{4}+2 x^{3}+3 x^{2}-7$
when $x=3$
when $x=-2$
\square \qquad

End Behavior: The behavior of the graph as x approaches $+\infty$ or $-\infty$.
I. Degree: Odd

Leading Coefficient: Positive
II. Degree: Odd

Leading Coefficient: Negative

$f(x) \rightarrow-\infty$ as $x \rightarrow-\infty$
$f(x) \rightarrow-\infty$ as $x \rightarrow+\infty$
$f(x) \rightarrow+\infty$ as $x \rightarrow+\infty$

$f(x) \rightarrow+\infty$ as $x \rightarrow-\infty$

EXAMPLE 5 What is the degree and sign of the leading coefficient for the polynomial functions?

Degree:
Leading Coefficient: \qquad
b)

Degree:

Leading Coefficient: \qquad

EXAMPLE 6 The energy E (foot-pounds) in each foot squared of a wave is given by the model $E=0.0029 s^{4}$ where s is the wind speed (knots). Graph. Use the graph to estimate the wind speed needed to generate a wave with 1000 foot-pounds of energy/foot squared.

