Honors Algebra II
 Notes Section 2.1
 Use Properties of Exponents

PROPERTIES

I. Product of Powers
II. Power to a Power \qquad
III. Power of a Product \qquad
IV. Negative Exponent \qquad
V. Zero Exponent \qquad
VI. Quotient of Powers \qquad
VII. Power of a Quotient \qquad

EXAMPLE 1 Evaluate.
a) $(-4 \cdot 25)^{2}=$ \qquad
b) $\quad 1^{15^{-1}}=$ 11^{18}
c) $\left(4^{2}\right)^{3}=$ \qquad
d) $(-8)(-8)^{3}=$
e) $2_{9}^{3}=$

EXAMPLE 2 A swarm of locusts may contain as many as 85 million locusts/km². About how many locusts are in such a swarm?

\# of locusts = locusts/km² \quad \# km²

EXAMPLE 3 Simplify.

a) $b^{-4} b^{6} b^{7}=$ \qquad
b) $\mathrm{r}^{-2}-3=$
s^{3}
c) $16 m^{4} n^{-5}=$
$2 n^{-5}$
d) $\left(7 y^{2} z^{5}\right)\left(y^{-4} z^{-1}\right)=$
e) $\mathrm{s}^{32}=$ t^{-4}
f) $x^{4} y^{-23}=$ $x^{3} y^{6}$

EXAMPLE 4 Simplify.Betelgeuse is one of the stars found in the constellation Orion. Its radius is about 150 times the radius of the sun. How many times as great as the sun's volume is Betelgeuse volume?

Volume of a Sphere $=4 / 3 \pi \mathrm{r}^{3}$

Betelgeuse's Volume =

Sun'sVolume

