

Characteristics of the graph of $y = ax^2 + bx + c$:

- The graph opens up if a > 0 and opens down if a < 0.
- The graph is narrower than the graph of $y = x^2$ if |a| > 1 and wider if |a| < 1.
- The axis of symmetry is $x = -\frac{b}{2a}$ and the vertex has *x*-coordinate $-\frac{b}{2a}$.
- The y-intercept is c. So, the point (0, c) is on the parabola.

Minimum and Maximum Values

EXAMPLE 3

Tell whether the function has a minimum/maximum value and then find it.

a) y = 3x² -18x + 20	b) $y = -4x^2$
a =	a =
a	a
value	value

EXAMPLE 4

A go-cart track has about 380 racers per week and charges each racer \$35 to race. The owner estimates that there will be 20 more racers/week for every \$1 reduction in the price/ racer. How can the owner maximize weekly revenue?

Revenue = Price X Attendance