Algebral Notes Section 3.7 Graph Linear Functions

Big Ideas

1. How to replace y in functions with $f(x)$.
2. How to graph linear functions.
3. How to read function notation.

VOCABULARY

Function Notation:

EXAMPLE 1 What is the value of the function $\mathrm{f}(\mathrm{x})=3 \mathrm{x}-15$ when $\mathrm{x}=3$.

EXAMPLE 2 For the function $f(x)=2 x-10$, find the value of x so that $f(x)=6$.

EXAMPLE 3 The gray wolf population in central Idaho was monitored over several years for a project aimed at boosting the number of wolves. The number of wolves can be modeled by the function $\mathrm{f}(\mathrm{x})=37 \mathrm{x}+7$ where x is the number of years since 1995. Graph the function and identify its domain and range.

D: \qquad
R:

					9						
					8						
					6						
					5						
					$\stackrel{4}{4}$						
					3						
					2						
					1						
					-1-1	1					
					2						
					3						
					4						
					5						
					${ }_{6}$						
					7						
					8						
					9						
					-10						

Parent Function for Linear Functions
The most basic linear function in the family of all linear functions, called the parent linear function, is:

$$
f(x)=x
$$

The graph of the parent linear function is shown.

Example 4 Graph the function. Compare the graph with $f(x)=x$.
a) $g(x)=x+3$

b) $h(x)=2 x$

x	y

Example 5 A cable company charges new customers ș 40 for installation and $\dot{\mathbf{s}} 60$ per month for its service. The cost to the customer is given by the function $f(x)=60 x+40$ where x is the number of months of service. To attract new customers, the cable company reduces the installation fee to ṣ5. A function for the cost with the reduced installation fee is $g(x)=60 x+5$. Graph BOTH functions. How is the graph of g related to the graph of f ?
$f(x)=60 x+40 \quad g(x)=60 x+5$

